Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators
نویسندگان
چکیده
Acoustic wave propagation in a one-dimensional waveguide connected with Helmholtz resonators is studied numerically. Finite amplitude waves and viscous boundary layers are considered. The model consists of two coupled evolution equations: a nonlinear PDE describing nonlinear acoustic waves, and a linear ODE describing the oscillations in the Helmholtz resonators. The thermal and viscous losses in the tube and in the necks of the resonators are modeled by fractional derivatives. A diffusive representation is followed: the convolution kernels are replaced by a finite number of memory variables that satisfy local ordinary differential equations. A splitting method is then applied to the evolution equations: their propagative part is solved using a standard TVD scheme for hyperbolic equations, whereas their diffusive part is solved exactly. Various strategies are examined to compute the coefficients of the diffusive representation; finally, an optimization method is preferred to the usual quadrature rules. The numerical model is validated by comparisons with exact solutions. The properties of the full nonlinear solutions are investigated numerically. In particular, the existence of acoustic solitary waves is confirmed.
منابع مشابه
Generation of acoustic solitary waves in a lattice of Helmholtz resonators
This paper addresses the propagation of high amplitude acoustic pulses through a 1D lattice of Helmholtz resonators connected to a waveguide. Based on the model proposed by Sugimoto (J. Fluid. Mech., 244 (1992), 55-78), a new numerical method is developed to take into account both the nonlinear wave propagation and the different mechanisms of dissipation: the volume attenuation, the linear visc...
متن کاملCharacterization by a time-frequency method of classical waves propagation in one-dimensional lattice : effects of the dispersion and localized nonlinearities
This paper presents an application of time-frequency methods to characterize the dispersion of acoustic waves travelling in a one-dimensional periodic or disordered lattice made up of Helmholtz resonators connected to a cylindrical tube. These methods allow (1) to evaluate the velocity of the wave energy when the input signal is an acoustic pulse ; (2) to display the evolution of the spectral c...
متن کامل2 00 9 Analytical study of the propagation of acoustic waves in a 1 D weakly disordered lattice
This paper presents an analytical approach of the propagation of an acoustic wave through a normally distributed disordered lattice made up of Helmholtz resonators connected to a cylindrical duct. This approach allows to determine analytically the exact transmission coefficient of a weakly disordered lattice. Analytical results are compared to a well-known numerical method based on a matrix pro...
متن کاملAnalytical study of the propagation of acoustic waves in a 1D weakly disordered lattice
This paper presents an analytical approach of the propagation of an acoustic wave through a normally distributed disordered lattice made up of Helmholtz resonators connected to a cylindrical duct. This approach allows to determine analytically the exact transmission coefficient of a weakly disordered lattice. Analytical results are compared to a wellknown numerical method based on a matrix prod...
متن کاملLinear and Nonlinear Dust Acoustic Waves in Quantum Dusty Electron-Positron-Ion Plasma
The behavior of linear and nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma including inertialess electrons and positrons, ions, and mobile positive/negative dust grains are studied. Reductive perturbation method is employed for small and finite amplitude DAWs. To investigate the solitary waves, the Korteweg–de Vries (KdV) equation is derived and the solution is presented. B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 259 شماره
صفحات -
تاریخ انتشار 2014